Lectures
Source code for lectures available on github.
- Motivation (Sep 8)
- Random Variables, Probability and Models (Sep 10-13)
- Monte Carlo methods (Sep 17-22)
- Testing (Part 1) (Sep 22-27)
- Estimation (Sep 29-Oct 4)
- Prediction (Oct 4-6)
- Exploratory Data Analysis and Unsupervised Learning (Oct 8-13)
- Regression in more detail (simple, logistic, multiple) (Oct 20-27)
- Maximum Likelihood (Oct 28)
- Model Selection with Cross-validation (Nov 1-5)
- Linear Regression and Model Selection (Nov 5-10) Optional additional notes: information criteria
- Resampling and the Bootstrap (Nov 12-15)
- Multiple comparison (Nov 22-24)
- ANOVA (Nov 29-Dec 3)
- Random effects (Dec 6-?)
- Regression Trees (Dec 13)
- Random Forests (Dec 15)